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ABSTRACT

A Generalized Teaching Machine Decision Structure with

Application to Speed Reading

A relatively new type of automated instruction called the '""computer -
directed'" teaching machine is discussed. Typical present-day teaching
machines either give every student the same instruction material or choose
what material the student receives on the basis of his answer to the last
question. The computer-directed machine chooses instruction material by
making a statistical evaluation of the student's total behavior in comparison
with other students!' total behaviors . This machine's statistics are actually
changed as new students take the course. Such a teaching machine can per-
form very much like a human tutor who adjusts his presentation to fit the
individual student's capabilities and who improves his teaching technique with
each student.

The role of the computer-directed machine in the teaching machine
field can only be determined after:

l. A technique for comparing teaching machines is developed.
2. More research is performed utilizing the computer-directed machine.

In this paper a technique is suggested for comparing teaching machines. The
machine's tutorial functions would be fitted to a very general model of the tu-
torial teaching cycle. This allows the various automated instruction devices

to be discussed in terms of a common model. An application of the computer-
directed machine was made to a speed reading course. Preliminary experiments
with this course indicate that the computer-directed machine can perform like

a human tutor.

The topic of speed reading lends itself to many possible future experi-
ments. Since most student's know something about speed reading prior to the
course, the student's speed reading skill before and after the course could be
measured and improvements could be noted. Many non-automated courses for
speed reading exist, and the student's improvements with automated and non-
automated instruction could be compared.

KEY WORDS

Teaching machine Computer Automatic instruction Speed reading
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CHAPTER 1

THE TEACHING PROCESS

Comparing Instruction Techniques

While research projects on automated instruction are being
conducted in many parts of the country, very few attempts have been
made to compare the various experiments. (c.f. Skinner, "No large-
scale evaluation of machine teaching has yet been attempted. We have
so far been concerned mainly with the practical problems in the design
and use of machines and with testing and revising simple programs "
pg. 159, ref. 17.) This is largely attributed to the lack of a standard
notation or measuring stick by which instruction techniques can be
compared. If automated instruction devices are ever to become market-
able, there must be a way to evaluate them both in terms of other auto-
mated devices and conventional instruction techniques. A comparison

method would be useful which would answer questions like these:

l. How does this instruction technique accomplish the process

of teaching?
2. How is the student paced through the course?

3. How does the structure of the course change after students

complete their study?

To facilitate this useful comparison, a model for the teaching
process is proposed. Individual teaching techniques could be fitted to
this model, and a standard notation would permit techniques to be com-

pared on the basis of how they fit the model. Such a model would be

=dli=



general enough to cover all variations of the teaching process. Fundamental
to the presentation of a model for teaching is an understanding of the me -

chanics of teaching itself.

Teaching

The goal of teaching is the student's mastery of a topic's prin-
ciples or skills. A course generally presents the topic principles in the
from of sub-topics; thus, the topic is taught in small increments {most
researchers, including Skinner17, in the field of automated instruction
agree that optimum learning occurs when the course is composed of a
large number of steps with very few sub-topics in each step. This
opinion is supported by such experimenters as Coulson and Silbermans).
A course may be pictured as a series of ascending levels---each level
representing a status position in the course indicating that the student
who reaches this point has mastered all of the sub-topics marked by
the previous levels. When a student reaches the uppermost or final

level of the course, he has mastered the whole topic.

Final level of course level L.

level 3

level 2

level 1

Macro View of a Course
Figure 1-1
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Teaching is complicated by the fact that learning is so dependent
on the individual. A course presentation that might work very well for one
student could be terrible for another. In terms of the macro or over-all
view of a course, the teacher's changes in his presentation are revealed
by the different paths for each student between levels of the course. The
path for a bright student might exhibit skipping over several levels at a
time while the path for a relatively dull student might show a tedious level

by level ascent.

level 5
,
]
r H level 4
BRIGHT . . DULL
STUDENT'S i level 3 STUDENT'S
PATH T . PATH
S0 : - -9
‘_____’ level 2 ®
t
'
l s level 1

Possible Paths.for a Bright and Dull Student

Figure 1-2

The teacher decides how to modify his presentation on the basis of the

individual student's learning behavior.

Tutoring is basically a feedback controlled systemls. The
teacher presents material to the input (the student's sensory receptors)
attempting to obtain desired responses at the output (the student's test
behavior). The responses are analyzed by the teacher who adapts his

presentation to get the proper response.



TEACHER

BRE- INSTRUCTION INPUT »]  STUDENT
- ELEMENTS
sl TO STUDENT
PRESENTATION
PLAN MODIFIER OUTPUT
FROM STUDENT'S
TEST
RESPONSES

Tutorial Instruction---A Feedback Controlled System

Figure 1-3

One of the tutor's most important functions, then, is the modi-
fication of his presentation. He performs this function by choosing from
his repertoire an appropriate method of instruction. That is, the instructor,
faced with the problem of teaching the course's remaining sub-topics and
having several alternative presentations in his repertoire, chooses the
presentation most suited to his student. He makes this choice periodi-
cally throughout the course because the optimum presentation may change

as the student progresses to new material.

The Teaching Cycle

If a teacher-student environment is observed for some time,
a very definite cyclic behavior is noted. The rhythm of teaching, testing,
and modifying the teaching (based on test results) is plainly apparent.
At first the teacher has some a priori plan of presentation of the material.
Perhaps this plan is based on previous experience with other students,
or it is designed to cover certain material in allotted amounts of time.

The teacher will begin the instruction following this plan. After a while



he will test the student and evaluate the effectiveness of the present plan.

The plan is modificd to fit the student's needs, and the whole cycle

repeats.

1. The teacher chooses the presentation that is best-suited

to the student at a given level.
2. The teacher presents this block of instruction.

3. The student is tested on the material covered by this

block of instruction.

4. The student is placed at a new level in the course.

The Teaching Cycle (condensed)

Figure 1-4

The teaching cycle can be observed in the macro or overall

course model

T \ i r 1 :
'. ; .L‘ ] i . /' ‘. ; ? 'J l.evel 1+l
1 . I '
' b (1r J) "’ Jl l" ! :
i ——'-J , . L i level i
ﬁ_ i | ra [l —;’ F ‘ 1 ! .
] 7 5
b(2,1) . ] b (2, 2) l Lb(z, 3) ;
— T ¢ .. 4 1 ; T level 2
g S S - 4
/
g b{l,1) b (1, 2)
ol —— I level ]
Macro Model Showing.Tcaching Cyede” . | ..
Figure 1-5
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Each of the methods of instruction available to the teacher at a given level,
i, is labeled block b(i,j) . The subscript j denotes the particular block
or instruction method. Note that at each level, 1, the teacher must
choose a particular block of instruction b (i, j) appropriate for this stu-
dent. This is called the tutorial decision making process. After the
teacher presemnts a block of instruction, he tests the student., The student
is now placed at a new level in the course because the teacher has re-
evaluated the student's mastery of the topic. This is called the tutorial
placement function. At this new level, the teacher must again make a

decision about a new b (i, j} , and the process cycles.

The placement function has been drawn as a quantized function.
That is, only a finite number of dotted lines are shown placing each stu-
dent from level to level via a block of instruction and associated test, yet
there are innumerable test behaviors which the student could exhibit.
However, there are some very good reasons for quantizing the placement

function. The two most significant reasons are:

1, Techniques for measuring learning are, at best, reliable only
as discrete measures, not continuous measures, of a student's
actual learning. (e.g. placement for all those students with

grade "A' behavior might be the same. Similarly placement

"1 nn

for students with grade B, C ,... behavior.)

2. If a course has a finite number of levels, then the number of

different placements must be finite.

-6~



CHAPTER: II

A MODEL FOR THE TEACHING CYCLE

In order to get a more detailed look at the teaching cycle, the
macro model of the whole course will be replaced by a micro model of
the cycle itself. This micro model has the structure of a tree segment.
When a course offers several alternative paths from start to finish, it
is described as exhibiting branching. Therefore, a tree is a useful
topology for the teaching cycle because it shows the branching nature

of a course very adequately.

The levels (i's) of the course are now represented by the
level nodes of the tree (the dark circles---see Figure 2-1). The dark
branches represent the various blocks of presentation available at each
level. The test period is represented by the test nodes (the light circles).
The student's test results place him (via the light branches) at a new

level node.

The representation of the entire course, by drawing the
whole tree with interconnecting micro models, would indeed be more
cumbersome than the anlogous representation by the macro model.
However, the representation of the teaching cycle alone may now be

considered in minute detail.

The micro model is drawn to show the nth teaching cycle
in the course (i.e. the next cycle after n-1 previous cycles have been
executed). Thus in is the present status level of the student, and the
teacher must choose an instruction block or branch from the available
values of jn (the tutorial decision making process). The student is
tested after terminating the branch, jn . His test behavior will lie in
one of the kn discrete ranges and will place him at a new level i

nt+l
(the tutorial placement function).

~T-
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placement

lines

level nodes

test
nodes

instruction
branches

level nodes

Tree Model of a Segment of
The Course

Figure 2-1
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tutorial
decision making
process

Micro Model of the Teaching Cycle

Figure 2-2



CHAPTER III

FITTING CURRENT EXPERIMENTS TO THE MICRO MODEL

Straight Line or Linear Teaching

By far the most common method of teaching used today is the
lecture method which employs straight line or linear teaching. That is,
there is simply no branching; the students follow a pre-selected path
through the course. This method of teaching fits the model by reducing
it to a trivial form. One can think of each level's having only one branch
(jn) and each test behavior (kn) leading to the same placement (in+1).
Also one can suppose, since relatively few tests are given during the
course (they are no longer needed to guide the teacher in his path deter-
mination---merely to grade the student), that the individual blocks of
instruction, b(in, jn) , become longer and the total number of teaching

cycles in the course becomes reduced (the step-size increases).

Intrinsic Programming

Crowder defines a method of course design called intrinsic
programmingg. The choice of the proper alternative instruction block
is built into the instruction material itself; so that, the material may
be self-taught. An example of an intrinsically programmed device is
the so-called programmed text which is well represented by the Crowder
Scrambled Book8. With these texts, the choice of the next page to be
read is determined by the student's answers to questions on the present

page; the choice is independent of the answers to previous questions.

=16



Of course, on each page there is only one mode or block of instruction
available. This description applies to a number of auto-instructional

devices currently on the market (such as Auto-Tutor °).

This type of instruction fits the model very well. Leaving
each level (in) there is still but one branch (jn) , but now the test

behavior ranges (kn) are definitely used to place the student at the
*

next level (i_,,) or page. /

n+1 / oz

Model for a Programmed Text

Figure 3-1

Extrinsic Programming

Crowder defines extrinsically programmed courses9 as
those where the choice of alternative instruction blocks (branching)
is performed by an external element such as a teacher or a computer,
and the basis for this choice involves the student's cumulative test

behavior. A typical computer-based teaching machine is a facility

S ahe



called "CLASS' developed by the Systems Development Corporation of
1
Santa Monica, California 6. Many of the courses taught at ‘cLass"

may be described by the following structure:

Courses are split into sub-topics A, B, C, D,
Available at each level are several alternative instruction modes. The
alternatives are organized such that alternative I covers topic A in
just a brief manner, alternative II goes into more detail, alternative III

goes into still more detail, etc.

A B & D

i | A I

P ! */" ‘ I

N N e e

Organization of a Computer-Based Course .

Figure 3-2

A student might be initiated from topic A on alternative I.
If he does not perform well, he may be routed through alternative II.
Suppose he is also routed through alternative III before he masters
topic A. Now the computer decides that this student is not as bright
as at first anticipated, and he perhaps needs a more detailed coverage
of future topics. Therefore for topic B, he might be initiated on al-
ternative II. Suppose he drops again to alternative III. Next the

computer would initiate him on topic C alternative III, etc.



In applying this type of automated instruction to the model, the
level placements based on the student's test behavior are similar to the
intrinsic Crowder type, but the choice of the instruction alternative 1s
decidely extrinsic. With this type of teaching machine, the full scope

of the teaching cycle model is represented.

Skinner Disc Device

17,1 it :
The Skinner Disc Device e is a very difficult one to fit

ta the micro model of the teaching cycle. The Skinner Disc or Tape
presents material to the student in an order identical to the physical
sequence on the disc or tape. With each frame of material there is a
question. When the student answers the question correctly, the frame
is dropped out of the course material. The disc or tape 1s rerun until
all frames are dropped out, and theoretically, all of the material is

learned.

This fits the model if one is willing to accept the idea of
disappearing branches. Possibly this can be represented if one
considers each re-show of the tape or disc as a new part of the

course and not just a re-traverse of the course.

Of course no model can be expected to represent adequately
all of the specific cases which it generalizes. The Skinner Disc Device
is a very unusual teaching method, and most present day teaching
methods are more like the previously described teaching techniques
However the model represents a large percentage of present-day

teaching situations.

13-



CHAPTER IV

COMPUTER-DIRECTED TEACHING MACHINES

The decision functions performed by most present-day computer-
based teaching machines are intuitive and somewhat arbitrary judgements.
With most of these machines the behavior of each student is forgotten as
the next student is encountered. Smallwood18 envisioned a teaching envi-
ronment as a probabilistic system---a system in which decisions are
based on statistical comparisons of the present student's behavior with
previous student's behaviors. Such a teaching system would continuously
revise its statistics about past students as new students took the course.
Smallwood constructed a computer simulation of this teaching system.

We call this type of teaching machine the “computer—directed” teaching

machine.

The author of this paper is presenting another computer-
directed teaching machine utilizing a probabilistic decision structure.
Now the notation has been established, and a modified decision struc-
ture which can apply to many courses has been developed The computer-

directed decision mechanism will be presented in this section.

The tutorial processes which tailor the course to an individual

are two-fold:

l. The decision making process which chooses an instruction

block from a number of alternatives.

2. The placement function which re-evaluates the student's
mastery of the topic by placing him at an appropriate level

in the course.

=1k



Computer-directed machines are distinguished from computer-based

machines by the different realizations of the tutorial processes.

Computer -Directed Realization of the Placement Function

Placement is the process of assigning a student to a new
level after re-evaluating his mastery of the topic. Therefore placement
is a function of the student's old level (in) , the instruction branch (jn)
which the student was given at the old level, and the range (kn) into
which the student's branch test behavior fell ~With this computer-
directed teaching machine the placement function is pre-determined
by the structure of the course. For example, if the student were
initiated on a branch which covered several sub-topics and if he did
very well on the branch test, he would probably be skipped ahead a
couple of levels. Whereas, if the student were on a branch covering
only a few sub-topics and if he did well, he would probably just be

advanced to the next level.

Expressing this placement function mathematically,

! - & il 4.1
1r1+1 V(ln Jn krl) ¢ )

This function remains constant as the course is taught to successive

students.

Ideally it might be desirable to change the placement function
as well as the course structure by some course monitor that observes
the reactions of students to the present structure. Such a course monitor
or automatic course programmer, while beyond the scope of this project,

1s worthy of consideration

-15-



Computer-Directed Realization of the Decision Process

The decision process chooses the instruction block best-suited
to the student from the entire repertoire of alternate instruction blocks
available at the present level;, Differences between decision processes

result from different interpretations of the words "pest-suited .

In this research the words 'best-suited' were interpreted to
mean the choice of that instruction block that will maximize the expected
value of a parameter indicative of the student's mastery of the topic.
This is a reasonable interpretation because the goal of a course is to

enable the student to master the topic.

Let this parameter be called U which represents the
student's learning or mastery of the course material. Also let hn
represent the student's cumulative past history (test béhavior) gehe-
rated before the nlCh teaching cycle. Then it is desired to find that
branch (jn) leaving the present level (in) which maximizes the

expected value of U given h
n

Max U: . (h ) is desired.
j i3 @

n nn
The notation MaX means that j for which the function
n
U. . (h) is a maximum.
i n
nn

This value may be expressed formally from the expected

21
value theorem as:

Max 7 (b )= Max Uf, . (Uh)dU (4. 2)
j PR - i n
n n'n n n“n

over U

=16=



In order to evaluate this expression it is necessary to express

the conditional probability density function f (U|hn) in terms of
n'n
statistics which are easily derived from students' path and test behaviors.

Consider that the cumulative history at the beginning of the next cycle,

h e is a function, W , of the old cumulative history, h , and the test
n n

behavior range for this cycle, kn . With the present teaching machine

structure the cumulative history is simply a uniformly weighted average

of all of the student's test behaviors.

nh + U(k )
n n

hn+1 N n+1

(4. 8)

where U(kp) is the value of the parameter U before

it 1s fitted to range k. (i.e. the actual history generated

by the student during the present cycle.)
While it may be argued that a great deal of information is lost about the
student's behavior during each cycle by uniformly averaging his behaviors,
it is important to simplify the representation of the student's history to
a single parameter (such as cumulative or averaged histories) because
of the large number of calculations involved in choosing the appropriate

instruction block. Now we consider all possible ranges the student's

test behavior might fit for the block b(in,jn) . The function f{ . (Ulhn)
1
nn

(abbreviated fn) can be expressed as the sum of the probability of each test

behavior range times the function f, ) (U|h

) (abbreviated f )
1n+ 1 Jn+ } L ntl

n+

for all possible ranges.

f. . (Ulh)=>P, . (x |h)f. . (Uh ) (4. 4)
1 ] n 1) n n i n+l
nn n"n n+l “n+l
k
n
where 1 =V({i ,j ,k
n+1l (n Jn n)

hn+l * w(hn’ kn)

=



It is possible to evaluate Pi ) (knlhn) (the probability of each
n'n
test behavior range conditioned upon a given past history) easily in terms

of student path and test behaviors. From Bayes Theorem21 the probability
of a particular behavior range given a certain past history is equal to the
conditional probability density function for this past history (given the
student's test behavior fitted the specified range), times the probability
that the student‘'s behavior will lie in this range, divided by the probability

that the student had this past history.

g (h |k ) p, j k)

n°n n-n
P, . (k |h)s= (4.5)
i j n n )
n°n
Z numerator
k
n

The probability, P, (kn) (abbreviated pn) , is estimated by that
n’n
fraction of the number of students reaching level iIl and emerging

on branch j whose test behavior falls in range kn . The conditional
n

density function g - (hnlkn) is estimated by observing the past histories
nn
of those students who reach level in , emerge on branch jn , and whose

test behavior lies in range kn . A density function (for the present ma-
chine Beta functions are used---see Appendices C and D) is fitted to

) 7,18 18 o
these observations ' . (Note that Smallwood’'s decision structure

determines P, . (k Ihn) in terms of an intuitive probability model
1 n
n'n

which, while reducing calculation time, is not as mathematically

justifiable as the Bayes Theorem expansion and subsequent estimation.)

The expression of fn in terms of fn+1 can be extended

until the last level, ii , (the end of the

successively to f
L n+2’

course_ hence i! =l., see page 2).
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fi J (Ulhn) zpi j(knlhn)z pi j (kn+llhn+l)" 'fi (Ulhl)
nn n'n n+l1'n+1l £
k k
o) n+l

(4.6)

th
Thus the mean value of U for a student at the 1rl level can be maximized
by picking that jn for which

ZP. 3 i Ih)MaxZP
1] n n j

h h )d
n'n n+1 in+1jn+l(kn+ll n+l) SVUfi (U' 2) ?

L
kn kn+1 over U (4.7)

1S a maximum

At the final level of the course there is only one instruction
block after which the final test is given. Therefore MaX is meaningless
since there is only one jJZ which is therefore the maximum. The only
quantity in the maximization expression which remains to be discussed

is the integral:

g Uf (U|lh)dU (4.8)
1£ b3

over U

This integral may be approximated by the sum:

Z U (k) P, (kﬁlhz)
K '
2 (4.9)
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